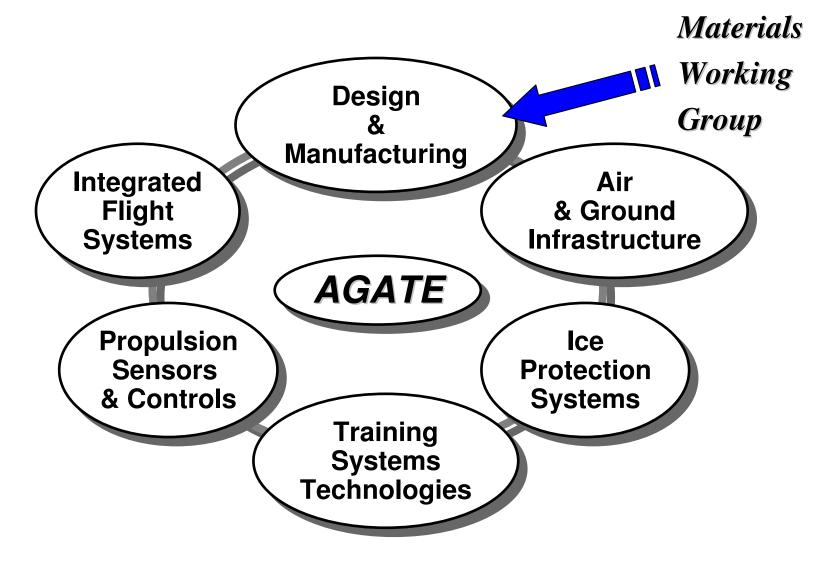


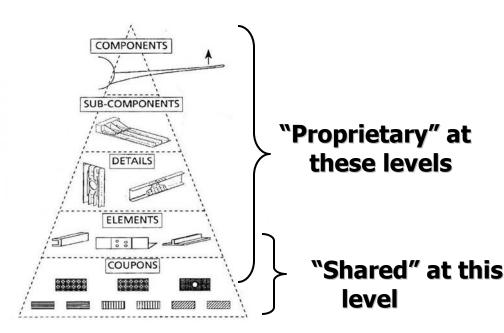
- Goals & Objectives
- Methods and Approaches to Material Quals and Production Control

John Tomblin, Director Yeow Ng, Associate Director Beth Clarkson, Statistician Kristin Marlett, Coordinator Michelle Man, Research Associate

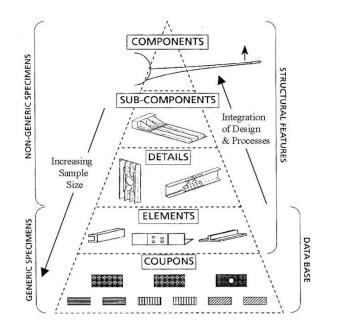
HISTORY: Advanced General Aviation Transport Experiments (AGATE)


- GOAL: To revitalize

 U.S. general aviation
 through development
 and deployment of
 advanced technologies
 in support of retrofit
 markets and a
 general aviation
 transportation system
- 1995-2002


WHAT WAS AGATE ?

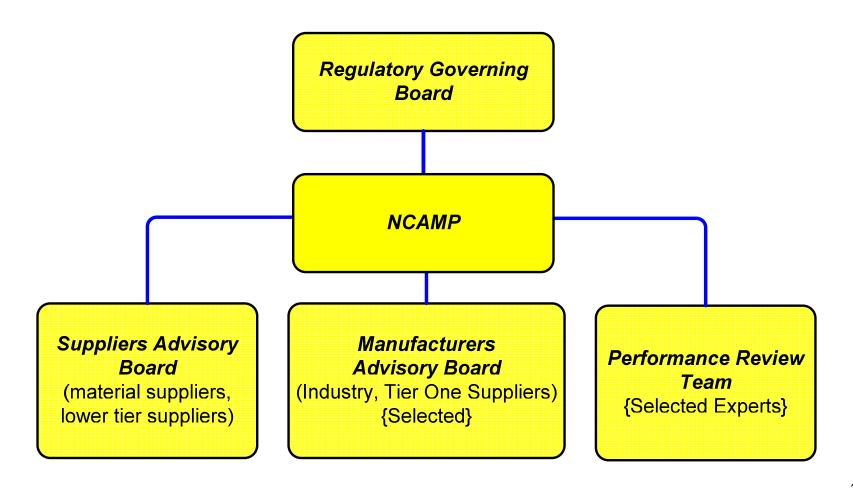
- AGATE Materials Working Group was tasked to make composite material property data "shareable"
 - like aluminum through MIL-HDBK-5
 - to reduce time and cost
 - to standardize material property data acquisition
 - MIL-HDBK-17 data does not have the necessary pedigree (no M&P specs)

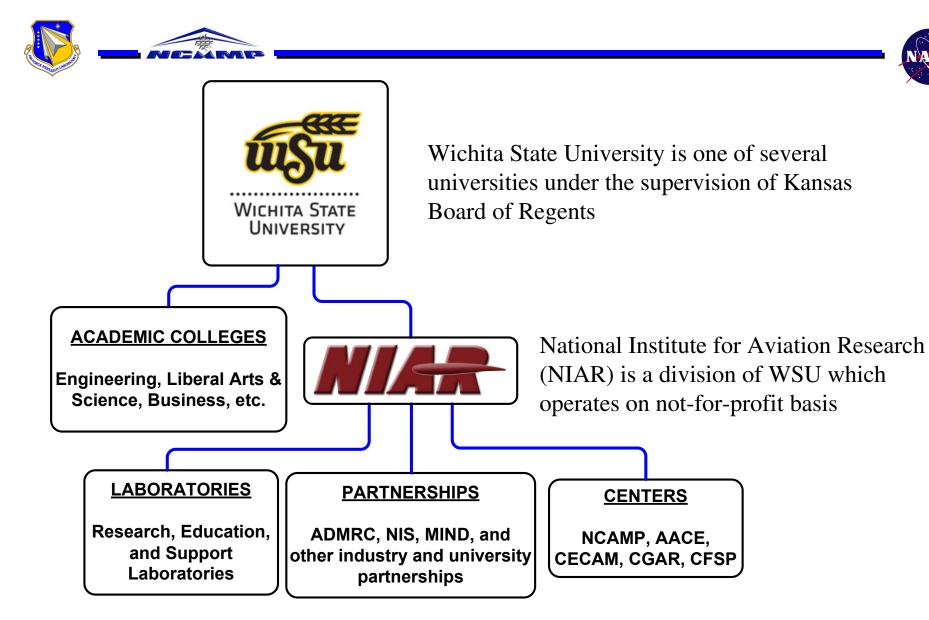

Timeline of Activity

1995• AGATE started with GA industry's desire to share databases and standardize procedures used in material characterization								
1998	• First AGAT	E document release – MIL-17 presentation	CMH17 COMPOSITE MATERIALS HANDBOOK					
1998 - 2002	• AGATE d	latabases produced						
1998 - 200		engagement and revision of qualification and ions) – statistical procedures	equivalency guidelines					
200		Small Airplane Directorate policy memorand 00-23.613-01; Volume 65, Number 114)	um (Policy Statement Number					
NASA		A Material & Process Specification Guideline epreg) – DOT/FAA/AR-02/109 & 110	s (unidirectional					
	2005	AA updated release of qualification and equiv OT/FAA/AR-03/19 (5 th revision)	alency guidelines					
	2003 •	FAA issued AC 23-20 Material Acceptance (Juidance					
The Research LBO	2005	NCAMP Initiative Announced by NASA						
SERAL AVIAN	2006 - 2008	AFRL and Industry Funded Qualification	tion Programs Began					
PERFINISTRATIO	2009	 NCAMP Standard Operating Proce FAA process) 	edures (modeled after 5					

The NCAMP Logo

The goal of NCAMP is to continue the work started with AGATE and expand its application to a broader range of products.




Focuses on lamina & laminate properties in support on higher level building blocks

NCAMP Organizational Structure

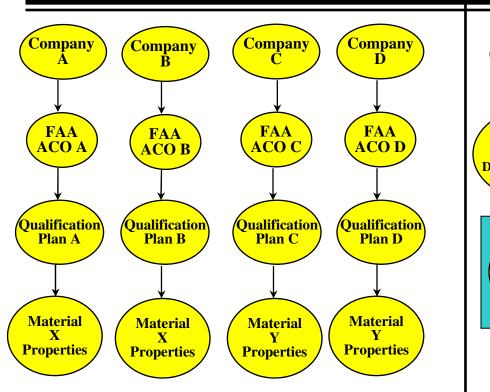

NCAMP is a center within NIAR which operates independently of other centers, partnerships, and laboratories.

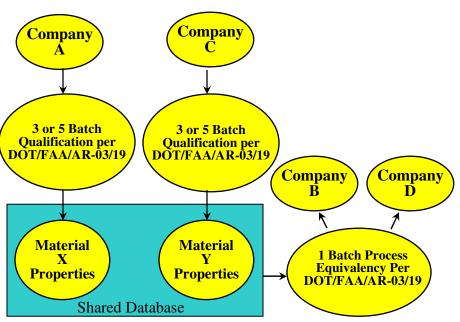
Not-For-Profit Business Model

- Utilizing federal and commercial funding to build procedures to generate industry-shared composite material property databases and specifications
- Self-sufficiency
 - 15 year history of generating and maintaining industry-shared composite material property databases
 - Continual transition from federally-funded to industry-funded
- Sources of Revenue
 - Primarily from services rendered
 - No annual membership fee
 - No fee to access data or specifications
- NCAMP staff are not limited to industry-shared material property database and specification work; may perform proprietary work for industry and research projects for government

Collaborating Partners

- CMH-17: Technical resource & data depository
- SAE: Converts NMS to AMS
- PRI, Nadcap & QPL
- ASTM D30: Develop/Revise Test Method Standards

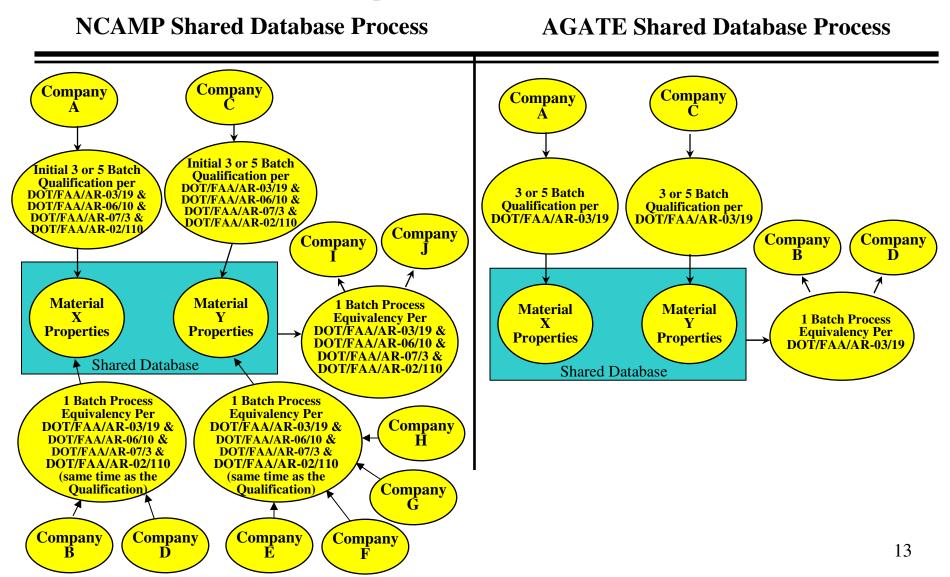



Material Qualification Processes

Traditional Process

AGATE Shared Database Process

MATERIAL PROPERTIES DO NOT IMPROVE THROUGH MULTIPLE QUALS !



Note: Specification limits and allowables are derived from the same data

Material Qualification Processes

Who Contributes What? (in government-funded programs)

- Material suppliers provide materials
- Aircraft companies generally provide labor to fabricate and inspect panels
 - May fulfill *coupon* level building block requirement
- FAA/NCAMP provides oversight and creates pedigree through inspection verification and test witnessing
 - No guarantee on any program application; subject to approval by certification agency on case-by-case basis
- NASA/DoD provide funding for coordination and material testing (limited time only)

Material Selection Process for Government-funded Programs

(when the government agencies do not specify the material)

- 1. Government/NCAMP may define categories of materials or processes
- 2. Material suppliers propose materials for inclusion in ballot
- 3. NCAMP creates the official ballot; government approval of the ballot is required
- 4. Material users (OEM/Tier-1) vote for the most desirable material
- 5. NCAMP counts the votes; government approval of the result is required

Official Ballet. Material Selection for 2009 AFRL Funding Due on October 23 rd , 2009 Instruction: Please complete this form and return it electronically by clicking the "Submit by Email" icon located at the upper right hand comer of this page. If you are unable to complete this form electronically, please print a hardcopy, complete ity by hand, and fix to 316-978-3175, Atm: Yeow Ng. You will receive an email from Yeow Ng to confirm receipt of your completed ballot.		
Your name: ial (a total of your company name) Your company name: ial (a total of your company name) To obtain information about the following materials, please login at fip://fip.niar.wichina.edu/nampfn ial (a total of your company name) To obtain information about the following materials, please login at fip://fip.niar.wichina.edu/nampfn ial (a total of your company name) (Username, niarkanew, Password: neampiab). If you are unable to login to the fip site, please send an email to your or ging wichina.edu to request the files to be emailed to you directly. This ballot is divided into two sections: ial (a total of your of your sections: (1) Out-of-autoclave cure medium toughness poxy (or epoxy blend). Funds are available to qualify two resin systems; one resin system from each section. Each resin system ial (a total of your your subocharchave cure medium toughness poxy (or epoxy blend) ECITION 1: Out-of-autoclave cure medium toughness poxy (or epoxy blend) ial (a total of you	of (a total of a total of a total of a total of (a total of (a total of (a total of (a total of (a total of (a total) of (a total of (a total)	l of of

Material Quals w/ Govt Matching Funds

- NASA Funded Cytec Cycom 5215
 - T40-800 12K Unitape Gr 145 RC 33%
 - 6K 5HS fabric with T650-36% RC, CPT approx. 14.9 mils
 - 3K70PW fabric with T650-38% RC, CPT approx. 8.0 mils
- NASA Funded Cytec Cycom 5250-5
 - T650 6K Unitape Gr 145 RC 32%
 - 6K 5HS fabric with T650-35% RC, CPT approx. 14.6 mils
 - 3K70PW fabric with T650-36% RC, CPT approx. 7.8 mils
- NASA Funded Hexcel 8552
 - AS4 12K tape at 190 gsm 35% RC, CPT approx. 7.4 mils
 - IM7 12K tape at 190 gsm 35% RC, CPT approx. 7.3 mils
 - AS4 plain weave fabric at 193 gsm 38% RC, CPT approx. 7.95 mils
- NASA Funded ACG MTM 45-1
 - G30-500 193 gsm 3K plain weave fabric 36% RC
 - HTS 5631 12K 145 gsm uni 32% RC
 - 6781 S-2 glass 35% RC
- AFRL Funded Renegade MVK-14 FreeForm Polyimide Qualification
 - T650 3K 8HS 370 gsm Fabric 36% Resin Content
- AFRL Funded Cytec 5320 (2 product forms)
- AFRL Funded Cytec 5276-1 (2 product forms)

Benefits of NCAMP

- To Material Suppliers
 - Publication of key material properties
 - Non-proprietary industry material and process specifications
- To Material Users
 - Availability of published material properties suitable for:
 - Material selection
 - Initial sizing of structure
 - With minimal internal testing may be used as part of product certification
 - To get access to draft reports/specifications, contact <u>kmarlett@niar.wichita.edu</u>
- To Government
 - Reduced workload by leveraging industry experts
 - Reduced cost by eliminating multiple/redundant programs

Benefits of Fabricating the Test Panels

- If fabricating 3-batch qualification panels,
 - the data, basis values, and allowables may be used in certified aircrafts⁽¹⁾
- If fabricating 1-batch equivalency panels,
 - the data, basis values, and allowables may be used in certified aircrafts if equivalency is demonstrated⁽¹⁾. Refer to MIL-HDBK-17 rev F section 8.4.1. or DOT/FAA/AR-03/19 section 6.0.
- Testing costs fully funded by NASA/DoD, <u>for a limited time</u> only (i.e. concurrent with initial qualification programs only)
- Prepreg cost paid by the material suppliers, <u>for a limited time</u> only (i.e. concurrent with initial qualification programs only)
- In 1-batch equivalency process, you will only need to fabricate about 18 panels per resin system per product form
 - Panel fabrication cost includes prepreg cutting and layup labor, some bagging materials, cure cycle, DAR conformity, and postage to send the cured panels to NCAMP only
- You have access to the data
- You will learn about composite material shared-database approach

⁽¹⁾ Subject to approval by certification agency

100% Industry Funded Programs

- Tencate TC250 (265°F oven cure)
 - HTS40 F13 150gsm/TC250 uni-directional prepreg
 - 12 k HTS40 F13 SFP OSI (193 gsm)/TC250 prepreg
- Newport NCT4708 (265°F oven cure)
 - NCT4708 MR60H 300gsm Tape
 - NCT4708 MR40 150gsm Tape
- Nelcote E-752 (350°F oven cure)
 - 193 gsm 3k PW G30-500 E752 Fabric
 - 145 gsm AS7 E752 Unidirectional Tape

Companies that are fabricating test panels (participating in quals & process equivalency)

- 1. Gulfstream Aerospace
- 2. AdamWorks
- 3. Albany Engineered Composites
- 4. ATK Space Systems
- 5. Boeing Helicopters
- 6. Scaled Composites
- 7. Goodrich Aerostructures
- 8. Bombardier Aerospace
- 9. AAR Composites
- 10. Cirrus Design Corporation
- 11. Hawker Beechcraft
- 12. Spirit AeroSystems, Inc.
- 13. Cessna Aircraft Company
- 14. Canyon Composites, Inc.
- 15. Bell Helicopter Textron, Inc.
- 16. General Dynamics (GDATP)

- 17. Northrop Grumman Corporation
- 18. Israel Aircraft Industries, Ltd.
- 19. General Atomics Aeronautical Systems, Inc.
- 20. Lockheed Martin Aero
- 21. Comtek Advanced Structures
- 22. Burnham Composite Structures
- 23. Quickstep
- 24. Radius Engineering
- 25. Canyon Composites, Inc.
- 26. Advanced Composites Technologies
- 27. Composites Horizons Inc
- 28. BAE Systems Composite Structures Inc.
- 29. GE Aviation
- 30. Pratt & Whitney

PAST

(Inefficient)

1996-2005

2005-

FUTURE

OEMs QUALIFY THEIR OWN MATERIALS

- same materials are qualified by different OEMs
- heavy workload on the FAA
- material properties not usable by others
- many years delay in data submission to CMH-17 (if ever) with no M&P spec

AGATE SHARED DATABASE APPROACH

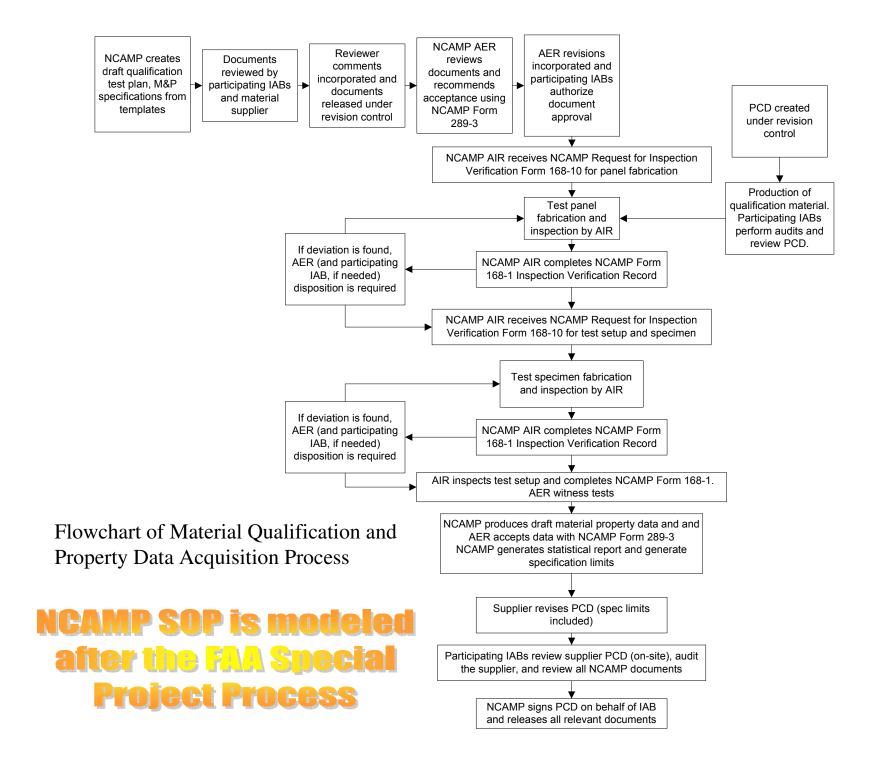
- •Primarily applied to General Aviation Products
- •FAA accepting the role of CMH-17 and SAE
- each material is qualified one time only
- reduced workload on the FAA (but still higher than for metals)
- FAA-accepted shared material property databases

In cooperation with CMH-17, NCAMP seeks to expand use of shared database

- FAA-accepted shared material property databases
- industry self regulate with minimal FAA oversight
 - supervised and reviewed by OEMs (similar to the "PAST")
 - facilitated by CMH-17/SAE/NCAMP
- each material is qualified one time only
- no delay in availability of data to CMH-17

NCAMP SOP: Uses and Limitations

- Each material qualification and material property data acquisition program uses unique sets of test plan and material & process specifications. Since composite material properties are dependent on the raw material (e.g. prepreg) properties as well as the composite fabrication process, material users should use the same material & process specifications. Deviation from the original material specification may change the composite material properties and render the material property data and allowables invalid. The material specification along with its process control document (PCD) may be revised over time so material users should use the same material specification and participate in material/PCD change management activities. However, minor deviation from the original process specification is quite common, especially in fabricating complex aerospace parts, but the deviation must be justified by analysis and/or test, as required by certifying agency.
- The use of NCAMP material and process specifications do not guarantee material or structural performance. Material users must institute required quality control including, but not limited to, performing regular purchaser quality control tests, performing periodic equivalency/additional testing, participating in material change management activities, conducting statistical process control, and conducting regular supplier audits in order to properly utilize NCAMP design data.
- NCAMP does not guarantee that all the data necessary to design and certify a composite structure is provided by the data defined within the NCAMP database. The applicability of NCAMP material property data, material allowables, and specifications must be evaluated on case-by-case basis by aircraft companies and certifying agencies. Each user of the data must conduct validation tests as described by the NCAMP procedures to verify that the data is applicable to the materials and processes being used. NCAMP assumes no liability whatsoever, expressed or implied, related to the use of the material property data, material allowables, and specifications.



Scope of NCAMP SOP

- Material Qualification and Property Data Acquisition Process
- Equivalency Process for Part Fabricators
- Pre-existing Material Property Datasets
- Maintenance of Existing Shared Material Properties Database
- Provide processes to assure quality of data being provided

NCAMP and CMH-17 will work to publish these guidance in Vol. 1 of CMH-17²³

The Approach - Completing the M&P Puzzle

Material Properties NCAMP Basis Values \rightarrow CMH-17 vol. 2

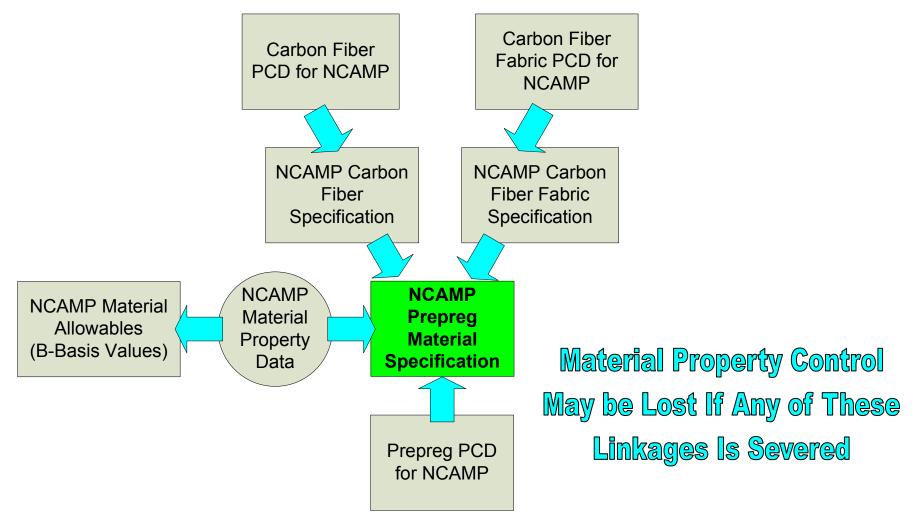
Material SpecificationNCAMP NMS XXXX/XX \rightarrow SAE AMS XXXX/XX

Process Control Documents (PCD) NCAMP Guides \rightarrow User Reviewed Supplier PCDs

Material & Process Limitation Information UBC/CMT Process Maps \rightarrow User Process Specs

Material Design Guidance NCAMP Recommendations \rightarrow User Design Manual

Material Specification Callouts


• Recommended:

- Option 1: For smaller applications, call out NMS directly in engineering drawings
- Option 2: If an aircraft company desires more control, an equivalent material specification may be created with linkage to NCAMP prepreg specification through a material substitution table, or equivalent. This is a standard industry practice for many fasteners and metals.
- Not recommended:
 - An aircraft company creates a separate prepreg material specifications with no linkage to NMS

Linkages to NCAMP Material Specification

Must Maintain Direct Linkage to NCAMP Prepreg Material Specification

- NCAMP prepreg specification, which helps ensure NCAMP allowables, is linked to
 - Prepreg PCD
 - Fiber specification and PCD
 - Fabric specification and PCD
- When an aircraft company creates a separate standalone prepreg material specification
 - The linkages to all other controlling specifications and PCDs are lost
 - Loss of material property control
 - May render material allowables invalid
 - Material properties may diverge because material go through changes over time
 - Results in multiple specifications for the same material

OTHERWISE, DO NOT USE NCAMP ALLOWABLES

M&P Controls

Material Name	Process Spec	Prepreg Spec	Prepreg Change Control	Prepreg PCD	Fiber Spec	Fiber Change Control	Fiber PCD	Fabric Spec	Fabric Change COntrol	Fabric PCD
А	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
В	yes	yes	yes	yes	yes	yes	no	yes	yes	no
С	yes	yes	yes	yes	no*	yes	no	no*	yes	no

* fiber and fabric spec control via prepreg PCD and/or prepreg spec

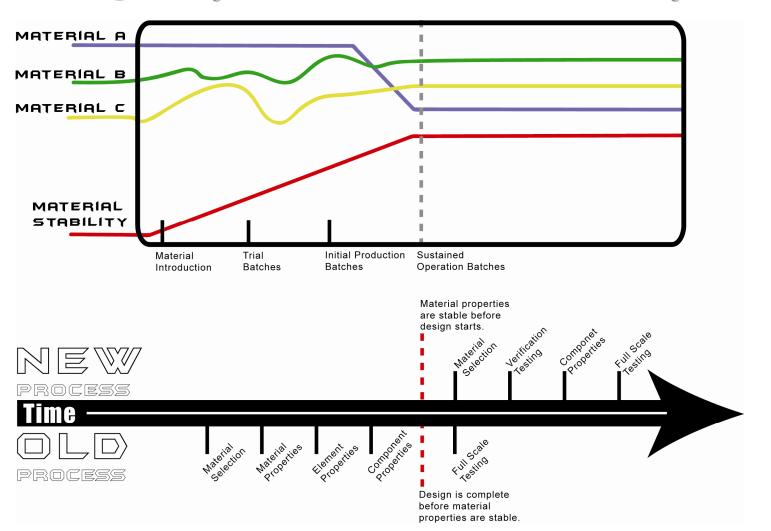
"A" is most common; "C" is the minimum NCAMP requirement 29

Process Specification Callouts

- NPS are designed to produce test panels only for the purpose of material qualification, equivalency, and acceptance
- Aircraft companies should create their internal process specifications using NPS as the baseline to include
 - Compatible film adhesives, syntactic core, honeycomb, etc.
 - Ply splicing, temperature uniformity requirement, first part qualification, discrepancy acceptance/rework criteria, etc.
 - Some additional R&D and testing may be required to create robust (proprietary) process specifications.

AFRL Funded Renegade FreeForm-14 (Non-MDA) Polyimide Qualification

- Industry selected
- Cure cycle may require a total of 15 hours and involve 200psi & 600°F
- 500°F wet, 550°F dry operating condition
- Product form:
 - T650 3K 8HS 376 gsm Fabric 36 % Resin
 Content


AFRL Film Adhesive Screening Programs

- Screen for compatible film adhesives for cocure and cobond applications with the prepregs currently undergoing NCAMP qualifications
 - ACG MTM45-1, Cytec 5215, Cytec 5250-5, Cytec 977-2, Hexcel 8552, Newport 4708, Nelcote E752, Tencate TC250
- Two film adhesives per prepreg resin system will be chosen by material users
- As a screening program, there will be no FAA involvement
- Material allowables will not be generated
- Adhesive material specifications will not be created since they are not qualification programs.
- A detailed adhesive information data sheet will be included in the final report. The final report will only contain test results and observations.

Qualify Matured Materials Only

Material qualification and property data acquisition should be independent of aircraft certification program

The Future of Shared Database

- Government funding will not continue forever need to become self-sufficient
 - Database must continue to grow and be maintained
 - Material specifications & PCD maintained by industry with <u>minimal</u> FAA & DoD oversight
- Material suppliers develop *PUBLICLY AVAILABLE* basic lamina and laminate material properties
 - Several variants of AGATE/NCAMP test matrices available to suit the budget and application
 - NCAMP test matrix is designed for multi-purpose use, although incomplete for many applications, is a significant cost and time savings for the material users
- Material users develop *PROPRIETARY* more detailed laminate and higher level building block properties

Desired Impact of Shared Database

- More material choices = more efficient designs
- One material = one qualification (cost savings)
- One material = one material specification (standardization)
- Improved availability: purchase "over-the-counter"
- Reduced price: you buy a quasi-commodity material
- Preferred by Tier 1 suppliers (when materials are not defined by OEMs) and small to midsize OEMs
- Designed by anyone, built by those who have proven equivalency (simple parts)
- Material properties are available before design begins
- Qualify only matured materials \rightarrow more accurate data \rightarrow improved structural efficiency & safety
- More resources are available to validate detail, sub-component, and component levels
- Leverage experts from all companies = improved safety
- Promotes the use of composites through standardization and availability of material property data
- More use of lightweight materials such as advanced composites will lead to more fuel efficient transportation system which will minimize the impact on the environment and reduce fuel prices

NCAMP Test Plans

- Based heavily on DOT/FAA/AR-03/19, DOT/FAA/AR-02/110, DOT/FAA/AR-06/10
 - Generic across commercial, military, space, rotorcraft, and general aviation
 - FAA helps create data pedigree (conformity & witnessing)
 - With process specification and material specification
 - Prepreg physical, chemical, and thermal properties
 - Lamina static, thermal, and fluid sensitivity
 - Laminate static (soft, quasi, hard): 3 environments, 3 batches
 - Subjected to rigorous industry and government review
- To establish material specification limits for material control
- To generate most basic material basis values (a.k.a material allowables), which is <u>not</u> to be confused with design values
- Provides some usable data; additional testing and analysis will be required (see CMH-17 vol.3)

NCAMP Lamina Test Matrix for unidirectional

		Property	Number of Batches x No. of Panels x No. of SpecimensTest Temperature/Moisture Condition					
Layup	Test Type and Direction							
			CTD	RTD	ETD	ETW		
[0] ₈	ASTM D3039 0° Tension	Strength, Modulus and Poisson's Ratio	3x2x3	3x2x3		3x2x3		
[0] ₂₀	ASTM D6641 0° Compression	Modulus	3x2x3	3x2x3	3x2x3	3x2x3		
[90] ₁₆	ASTM D3039 90° Tension	Strength and Modulus	3x2x3	3x2x3		3x2x3		
[90] ₂₀	ASTM D6641 90° Compression	Strength and Modulus	3x2x3	3x2x3		3x2x3		
[0/90] _{3S}	ASTM D3039 0° Tension	Strength and Modulus	3x2x3	3x2x3		3x2x3		
[90/0/90] ₇	ASTM D6641 0° Compression	Strength and Modulus	3x2x3	3x2x3	3x2x3	3x2x3		
[45/-45] _{4S}	ASTM D3518 In-Plane Shear	Strength and Modulus	3x2x3	3x2x3		3x2x3		
[0] ₄₅	ASTM D2344 Short Beam	Strength	3x2x3	3x2x3	3x2x3	3x2x3		

NCAMP Laminate Test Matrix for unidirectional (continue next page)

(%0°/%±45°/%90°			Number of Batches x Number of Panels x Number of Test Specimens			
) Actual Test Type	Test Type and Layup	Property	Test Tei	nperature/M Condition	Aoisture	
			CTD	RTD	ETW	
(25/50/25 - QI) UNT1	ASTM D3039 Un-notched Tension [45/0/-45/90]2S	Strength & modulus	3x2x3	3x2x3	3x2x3	
(10/80/10) UNT2	ASTM D3039 Un-notched Tension [45/-45/0/45/-45/90/45/-45/45/-45]S	Strength & modulus	3x2x3	3x2x3	3x2x3	
(50/40/10) UNT3	ASTM D3039 Un-notched Tension [0/45/0/90/0/-45/0/45/0/-45]S	Strength & modulus	3x2x3	3x2x3	3x2x3	
(25/50/25 - QI) UNC1	ASTM D6641 Un-notched Compression [45/0/-45/90]3S	Strength & modulus		3x2x3	3x2x3	
(10/80/10) UNC2	ASTM D6641 Un-notched Compression [45/-45/0/45/-45/90/45/-45/45/-45]S	Strength & modulus		3x2x3	3x2x3	
(50/40/10) UNC3	ASTM D6641 Un-notched Compression [45/0/90/0/-45/0/45/0/-45/0]S	Strength & modulus		3x2x3	3x2x3	
(25/50/25 - QI) SBS1	ASTM D2344 Short Beam	Strength		3x2x3	3x2x3	

(%0°/%±45°/%90°	Test Type and Layup		Number of Batches x Number o Panels x Number of Test Specimens			
) Actual Test Type			Test Temperature/Moisture Condition			
			CTD	RTD	ETW	
(25/50/25 - QI) OHT1	ASTM D5766 Open Hole Tension [45/0/-45/90]2S	Strength	3x2x3	3x2x3	3x2x3	
(10/80/10) OHT2	ASTM D5766 Open Hole Tension [45/-45/0/45/-45/90/45/-45/45/-45]S	Strength	3x2x3	3x2x3	3x2x3	
(50/40/10) OHT3	ASTM D5766 Open Hole Tension [0/45/0/90/0/-45/0/45/0/-45]S	Strength	3x2x3	3x2x3	3x2x3	
(25/50/25 - QI) FHT1	ASTM D6742 Filled Hole Tension [45/0/-45/90]2S	Strength	3x2x3	3x2x3	3x2x3	
(10/80/10) FHT2	ASTM D6742 Filled Hole Tension [45/-45/0/45/-45/90/45/-45/45/-45]S	Strength	3x2x3	3x2x3	3x2x3	
(50/40/10) FHT3	ASTM D6742 Filled Hole Tension [0/45/0/90/0/-45/0/45/0/-45]S	Strength	3x2x3	3x2x3	3x2x3	
(25/50/25 - QI) OHC1	ASTM D6484 Open Hole Compression [45/0/-45/90]4S	Strength		3x2x3	3x2x3	
(10/80/10) OHC2	ASTM D6484 Open Hole Compression [45/-45/0/45/-45/90/45/-45/45/-45]28	Strength		3x2x3	3x2x3	
(50/40/10) OHC3	ASTM D6484 Open Hole Compression [0/45/0/90/0/-45/0/45/0/-45]2S	Strength		3x2x3	3x2x 3 9	

(%0°/%±45°/%90°	Test Type and Layup	Property	Number of Batches x Number of Panels x Number of Test Specimens				
Actual Test Type	Test Type and Edyap	Tioperty	Test Ter	Temperature/Moisture Condition			
			CTD	RTD	ETW		
(25/50/25 - QI) FHC1	ASTM D6484 Filled Hole Compression [45/0/-45/90]4S	Strength		3x2x3	3x2x3		
(10/80/10) FHC2	ASTM D6484 Filled Hole Compression [45/-45/0/45/-45/90/45/-45/45/-45]2S	Strength		3x2x3	3x2x3		
(50/40/10) FHC3	ASTM D6484 Filled Hole Compression [0/45/0/90/0/-45/0/45/0/-45]2S	Strength		3x2x3	3x2x3		
(25/50/25 - QI) SSB1	ASTM D5961 Single Shear Bearing [45/0/-45/90]2S	Strength & Deformation		3x2x3	3x2x3		
(10/80/10) SSB2	ASTM D5961 Single Shear Bearing [45/-45/0/45/-45/90/45/-45/45/-45]S	Strength & Deformation		3x2x3	3x2x3		
(50/40/10) SSB3	ASTM D5961 Single Shear Bearing [0/45/0/90/0/-45/0/45/0/-45]S	Strength & Deformation		3x2x3	3x2x3		
(100/0/0) ILT	ASTM D6415 Interlaminar Tension [0]30	Strength	1x1x6	1x1x6	1x1x6		
(25/50/25 - QI) CAI1	ASTM D7136 & D7137 Compression After Impact (1500 in.lb/in) [45/0/-45/90]4S	Strength		1x1x6	40		

Fluid Sensitivity Screening

Short Duration Contact:						
MEK weeking fluid ASTM D740	15 days min. @ 70° $F \pm 10^{\circ}$ F	70°F	FS21RT			
MEK washing fluid. ASTM D740	13 days mm. $@ 70 F \pm 10 F$	350° F	FS21ET			
Polypropylene Glycol Deicer (Type I) Mil-A-	15 days min. @ 70° $F \pm 10^{\circ}$ F	70°F	FS22RT			
824 3	13 days mm. $@ 70 F \pm 10 F$	350° F	FS22ET			
Isopropul Alashal Deising Agant (TT I 725)	15 days min. $@70^{\circ} F^{\pm}10^{\circ} F$	70°F	FS23RT			
Isopropyl Alcohol Deicing Agent (TT-I-735)	15 days mm. $@70$ F \ge 10 F	350° F	FS23ET			
Control Tests:						
Davi	70°F	FS32RT				
Dry Dry per section 6.1		350° F	FS32ET			
8507 Deletive Humidity	Per section 6.1	70°F	FS33RT			
85% Relative Humidity		350°F	FS33ET			

Extended Contact:	Exposure	Test Condition	Code
100 Low Lood Aristics Evel (ASTM D010)	$70^{\circ} \text{ F} \pm 10^{\circ} \text{ F}$ (Note 1)	70° F	FS11RT
100 Low Lead Aviation Fuel (ASTM D910)	$70 \text{ F} \pm 10 \text{ F} (\text{Note 1})$	350° F	FS11ET
SAE AMS 2629 Jet Reference Fluid	$70^{\circ} \text{ F} \pm 10^{\circ} \text{ F}$ (Note 1)	70° F	FS12RT
SAE AMS 2029 Jet Reference Fluid	$70 \ F - 10 \ F (1000 \ 1)$	350° F	FS12ET
MIL DDE 5606 Hudroulie Oil	$160^{\circ} E^{\pm} 10^{\circ} E (Note 1)$	70°F	FS13RT
MIL-PRF-5606 Hydraulic Oil	$160^{\circ} \text{ F} \pm 10^{\circ} \text{ F} (\text{Note 1})$	350° F	FS13ET
MIL DDE 92292 Hudroulio Gil	$160^{\circ} \text{ F} \pm 10^{\circ} \text{ F} (\text{Note 1})$	70° F	FS14RT
MIL-PRF-83282 Hydraulic Oil	$\begin{bmatrix} 100 & \Gamma - 10 & \Gamma \text{ (Note 1)} \end{bmatrix}$	350° F	FS14ET
MIL-PRF-7808 Engine Oil	$160^{\circ} \text{ F} \pm 10^{\circ} \text{ F}$ (Note 1)	70°F	FS15RT
MIL-PKF-7808 Eligille Oli	$\begin{bmatrix} 100 & \Gamma - 10 & \Gamma \text{ (Note 1)} \end{bmatrix}$	350° F	FS15ET
MIL DDE 22600 Class STD Engine Oil	$160^{\circ} \text{ F} \pm 10^{\circ} \text{ F}$ (Note 1)	70°F	FS16RT
MIL-PRF-23699, Class STD Engine Oil	$100 \ F - 10 \ F (100 \ C \ 1)$	350° F	FS16ET
See Water (ASTM D1141 or equiv)	$160^{\circ} \text{ F} \pm 10^{\circ} \text{ F} (\text{Note 1})$	70°F	FS17RT
Sea Water (ASTM D1141 or equiv)	$100 \ F - 10 \ F (100 \ C \ 1)$	350° F	FS17ET
Shudgel LD 4 (SAE AS1241 Type W. Class 1)	$160^{\circ} \text{ F} \pm 10^{\circ} \text{ F} (\text{Note 1})$	70°F	FS18RT
Skydrol LD-4 (SAE AS1241, Type IV, Class 1)	$100 \Gamma - 10 \Gamma (100 \text{cm} 1)$	350° F	FS18ET
50% Water with 50% Skydrol LD-4 (SAE	$160^{\circ} \text{ F} \pm 10^{\circ} \text{ F} (\text{Note 1})$	70°F	FS19RT
AS1241, Type IV, Class 1)	100 F - 10 F (INOLE I)	350° F	FS19ET
PAO (Poly Alphaolefin) Cooling Fluid, MIL-C-	$160^{\circ} \text{ F} \pm 10^{\circ} \text{ F} (\text{Note 1})$	70° F	FS20RT
87252	$100 \Gamma - 10 \Gamma (1000 I)$	350° F	FS20ET

Freezer Storage Life and Out-Time Verification

Property	Method/Condition	# Replicates per condition
Short Beam Strength (Note 3)	ASTM D 2344-00, RTD	5
Tack	See section 7.1 or use material supplier recommended method	3
Drape	See section 7.2 or use material supplier recommended method	3
HPLC (Note 2)	SACMA SRM 20R-94	2
Photomicrography and void content determination	Reference MIL-HDBK-17-1F section 6.6.7.3	As needed

Freezer Storage Life and Out-Time Verification (con't)

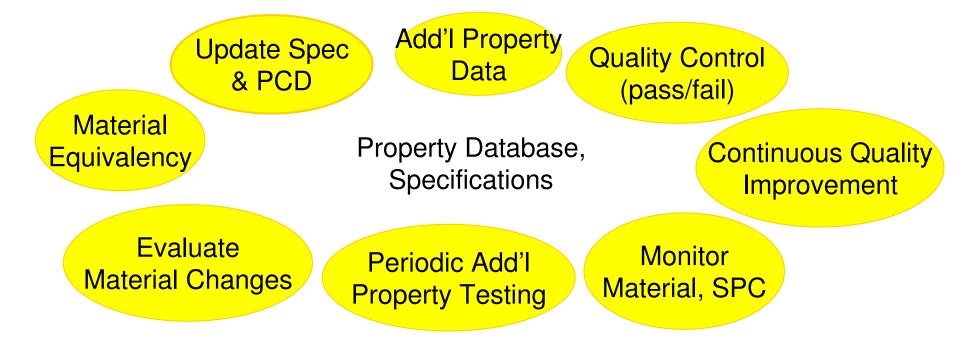
Freezer Storage Time			Out Time at 70	$0^{\circ} \pm 10^{\circ}$ F a	and 0-60% RH		
<10° F	< 1 day	3 days	5 days	7 days	9 days	11 days	13 days*
As manufactured Code	✓ 0/1	✓ 0/3	✓ 0/5	✓ 0/7	✓ 0/9	✓ 0/11	✓ 0/13
3 months freezer Code	✓ 3/1		✓ 3/5		✓ 3/9		
6 months freezer Code	✓ 6/1		✓ 6/5		✓ 6/9		✓ 6/13
9 months freezer Code	✓ 9/1		✓ 9/5		✓ 9/9		
12 months freezer Code	✓ 12/1	✓ 12/3	✓ 12/5	✓ 12/7	✓ 12/9	✓ 12/11	✓ 12/13

45

Detailed Documentation of Material, Panel Fabrication Procedures, and Test Methods Used

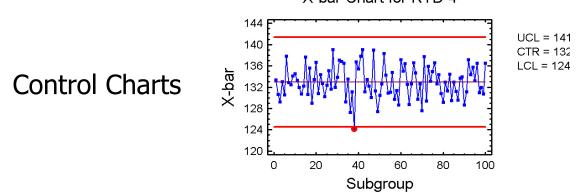
- Detailed documentation of pedigree information is a very important part of material qualification programs
- Standard forms have been created for use by NCAMP material qualification programs

CENERAL MATERIAL DESCR TO BE COMPLETED BY MATERIAL MATERIAL Composite Common Name Composite Common Name Composite Product Name (Supplier's Composite	COMPOSITE MATERIAL DATA COLLECTION TEMPLATE TEST PANEL (OR SUB-PANEL) DATA I EST PANEL (OR SUB-PANEL) DATA I Applicable to All Panels on this Sheet, Entr PANEL DESCRIPTION (TO BE COMPLETED BY PANEL PARE Panel Sub-pane Identification Number Used & The Description (To See Complete Test Panel) Used & The Description (To See Complete Test Panel)	COMPOSITE MATERIAL DATA COLLECTION TEMPLATE				Be	Required Entry	rable
Composite Specification Number Proc 1st Traduct of ITTM or regeneration Composite Specification Dash Number File 1st Traduct of ITTM or regeneration Scrim Mearce Style Market Manual And Traduct of ITTM or regeneration Scrim Weave Style Market Manual And Traduct of ItTM or regeneration Scrim Weave Style Market Manual And Traduct of ItTM or regeneration Nominal Curred Ply Thickness Market Manual And Traduction ItTM or regeneration MATRIX Market Manual And Traduction ItTM or regeneration O' Warp Officience Fibers Fiber Pressoner Production Location Fiber Pressoner Production Location Fiber Pressoner Production It Control and the Number(a) Fiber Pressoner Production Location Fiber Pressoner Production Location Fiber Pressoner Production Location Fiber Pressoner Production Location Fiber Pressoner Production Location Fiber Pressoner Production Location Fiber Lor Ave. Mais Per Unit Length Fiber Lor Ave. Mais Per Unit Length	Termini Bioscippion recess DBI for which the dwnel is to be used. Benel Biotechic Biosci, Na etaic Composite Martine Dates Na etaic Donno del Marcine Dates Na etaice Trata d'Arung del Trata composition process Autochim. Overn del Prese ID Trata d'Arung del Trata compositione process Autochim. Poesa temperature Trata d'Arung Trata Composition process Autochim. Poesa temperature Carre Vascutt Pressure Applied a End del trats DMartino Etaido temperature Trata d'Arung Trata d'Arungentaria	TO BE COMPLETED BY TESTING LAB TO BE COMPLETED BY TESTING LAB Complement code reserves to the complement of	Unit or Format	ASTM E143 Item No. 32 32 30 30 30 30 30 30 30 30 30 30 30 30 30	A Target Value (if applicable a set of the s	e	Optional Condition 2	Condition 3


Material Control

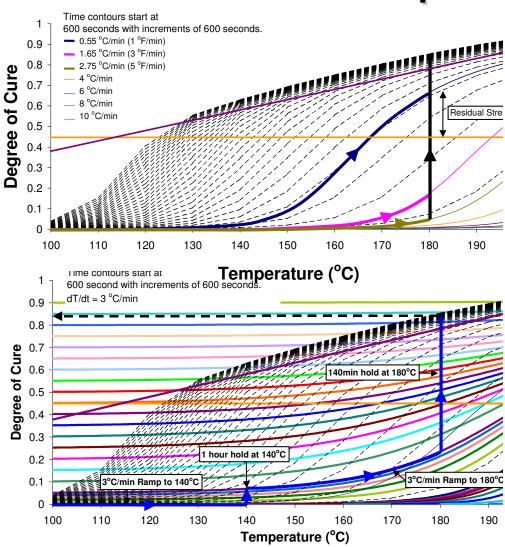
- Process Control Documents (PCD)
 - Prepreg
 - Carbon Fiber Tow
- Material Specifications with QPL
 - Prepreg
 - Carbon Fiber Tow (includes "fingerprint")
 - Carbon Fiber Fabric (no NCAMP-approved PCD but internal supplier PCD with change notification required)

Compliance with AC23-20 is a Continuous Process


Active Supplier and User Participation Required with *minimal* FAA & DoD oversight

Material Property Monitoring

 Partnering with material suppliers and aircraft companies to monitor material property variations over time
 X-bar Chart for RTD 4

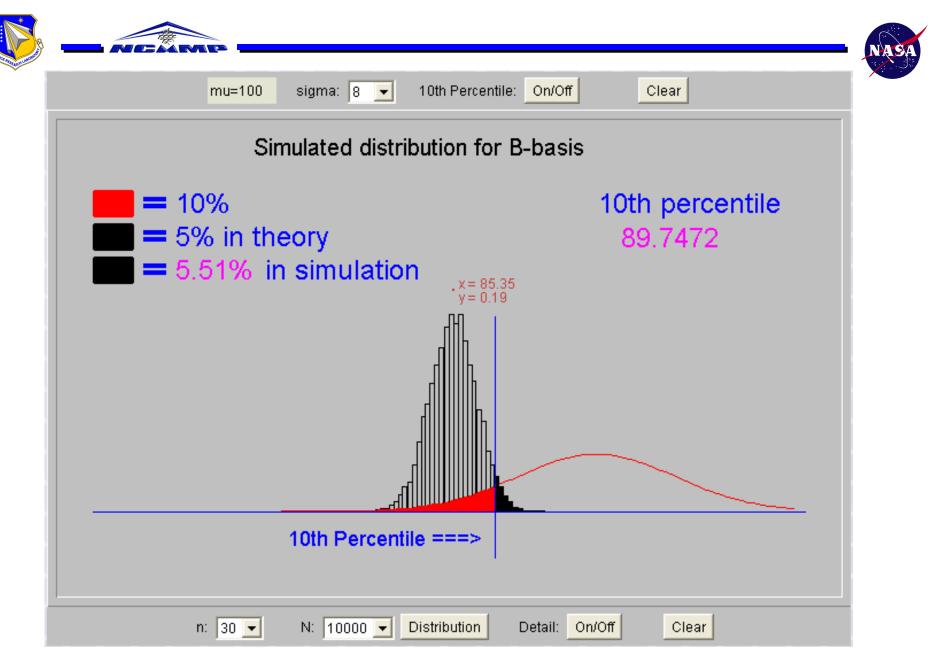


- Everything varies at least a little bit. So how do you tell when you are just experiencing normal variation versus when something out of the ordinary is occurring? Control charts were designed to make that distinction
- As long as all points lie inside the upper and lower control limits, the variation is presumed to be normal or a common cause variation. When a data point falls outside those limits, it's time to look for a reason for the variation
- Two-sided monitoring for all properties including strength

Process Map Development

- Material is characterized using DSC for degree of cure; optionally other properties can also be characterized using DMA, TMA, etc.
- Process maps are generated with contours of time for isothermal holds, overlaid with dynamic ramps
- A map can either consider multiple ramps at the same ramp rate, or a single ramp at a different ramp rate
 - This is not a fundamental drawback, but a limit to how busy a map can be
- Any cycle can then be followed by following the ramp and hold contours
- The resulting cycle can then be overlaid on property maps with identical axes but with contours of the property of interest
- Other than limitations of graphical representation, same accuracy as running computer model, and much more informative
- A UBC spin-off company, CMT, is developing simple graphical applications using process maps for even further automation and convenience

Some NCAMP Research Projects

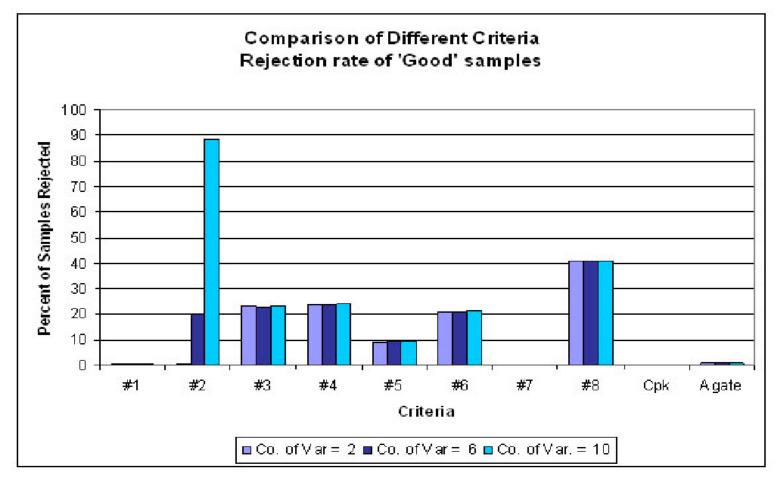

(Past, Current, and Future)

Basis Value Simulation Program

- Definition (that few people understand)
 - B-Basis (or B-Value) -- A statistically-based material property; a 95% lower confidence bound on the tenth percentile of a specified population of measurements. Also a 95% lower tolerance bound for the upper 90% of a specified population.

This internet browser-based simulation program is available at NCAMP ₅₂ website http://www.niar.wichita.edu/coe/ncamp_media.asp

Acceptance Criteria Comparison

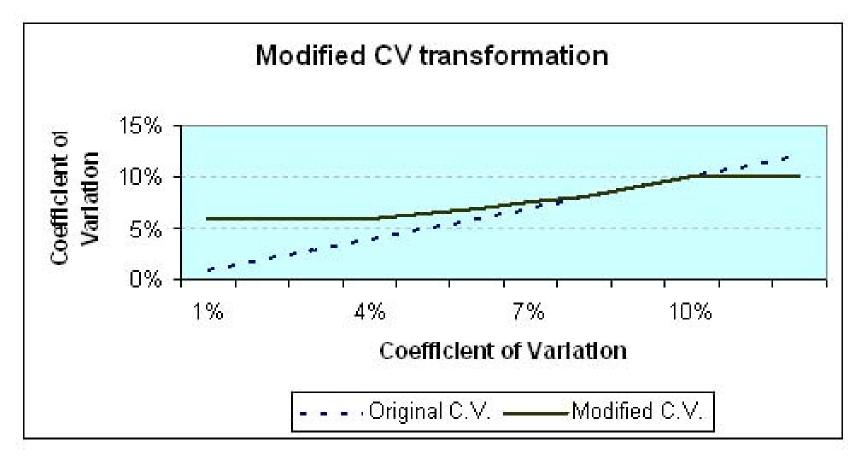

(slide 1 of 2)

- Comparison of various acceptance criteria
 - Earlier methods investigated by Mark Vangel & Scott Reeve
 - Many used A and B-basis values as acceptance thresholds. The numbers used in the comparison were obtained from the basis value simulation program (previous slide)
 - Newer methods include AGATE acceptance criteria and CPKbased criteria
- Includes effects due to retests
- Presentation file available for download at http://www.niar.wichita.edu/coe/ncamp_media.asp

Figure 1: Percentage of good samples rejected

Beth Clarkson and Yeow Ng, "Comparison of Various Composite Material Acceptance Criteria," accepted for publication in Journal of Advanced Materials.

Temporary Use of Higher than Measured Coefficient of Variation (CV)


- Qualification programs often obtain very low coefficient of variations (CV) because
 - Materials are made within a short period of time (not representative of actual material property variation)
 - Materials are tested by the same operators using the same equipment setup/calibration/fixture/etc.
- Low CV leads to unrealistically high basis values and material specification limits
- NCAMP will assume higher than measured CV (therefore, lower basis values and material specification limits) for a temporary period of time as follows:
 - If the measured CV at a given test condition is 0% to 4%, use an assumed CV of 6% or the pooled CV, whichever is greater.
 - If the measured CV at a given test condition is between 4% and 8%, use an assumed CV = 0.5*(measured individual CV) + 4% or the pooled CV, whichever is greater.
 - If the measured CV at a given test condition is 8% to 10%, use the measured CV or the pooled CV, whichever is greater.
 - If the measured CV at a given test condition is 10% or greater, question the data. And for setting specification requirement use a maximum CV of 10%.
- When a sufficient number of production batches have been produced and tested (approximately 8 to 15 batches), the basis values and specification limits may be adjusted higher.

NCAMP recommends the use of allowables calculated from modified CV, but publishes those calculated from as-measured CV also.

Temporary Use of Higher than Measured Coefficient of Variation (CV)

CMH-17 Rev G, Vol. 1, Section 8.4.4

Additional tests previously suggested by NCAMP members, but never incorporated due to various reasons

Additional tests previously suggested by NCAMP members

- Fatigue: LEF and load truncation
 - BVID, open-hole, filled-hole
 - compression & shear, 3 laminates, RTD, RTW
 - Reason why this was not included:
 - members/consultants could not agree on an approach/test matrix/defects
- Co-cure sandwich structures properties
 - core and sandwich testing
 - Compression, tension, shear, flexure, peel, thermal conductivity, etc.
 - CTD, RTD, ETW
 - Includes honeycomb/foam core qualification
 - Reason why this was not included:
 - members/consultants could not agree on a specific adhesive and honeycomb density/cell size/thickness/etc.
- Expanded laminate test matrix
 - CTE, Cp, moisture diffusivity, ILT, ILC, ILS, fastener pull-through, countersink fastener, bearing by-pass, laminate flexure (unnotched/open-hole/filled-hole), thermal cycling, CAI (vary thickness, soft/hard, energy, impactor diameter), W/d ratio curves, add ETD & ETW2
- Countersink effects

Continued: Additional tests previously suggested by NCAMP members

- Properties of higher level building blocks: element (e.g. Pi, hat, etc.), detail, etc.
 - Compression, tension, shear, flexure, peel, thermal conductivity, etc.
 - Reason why this was not included:
 - Technology is still maturing; VARTM emerging
- Analytical Model Verification
 - To verify and fine-tune analytical models through a <u>mini building block</u> experiment
 - Test articles representative of larger structures